Document Type : Research Paper

Authors

1 PhD Student. Department of Information Science and Knowledge, Alzahra University, Tehran, Iran

2 Assistant Professor. Department of Technology Application in Language Teaching. Alzahra University, Tehran, Iran

Abstract

Purpose: The purpose of this study is to investigate the most widely used functions of natural language processing (NLP) in the field of library science and information science Metodology: The present study was carried out through documentary or library analysis and by examining and analyzing the texts. Findings: So far, the important applications of natural language processing have been implemented in various fields, including library science and information sciences. In this research, the most widely used functions of natural language processing (NLP) in the field of library and information science are: automated indexing, automatic information extraction or auto summarization, data retrieval, interleaving information retrieval (review system), music information retrieval, Auto Automatic classification and Question & Ask systems. Conclusion: Natural language processing continues to have good and useful capabilities in various fields, including in the field of library and information sciences, which should By enumeration the benefits and costs of it Take appropriate action for the integration of natural language processing in different subject areas.

Keywords

Adriani, M. (2000). Using statistical term similarity for sense disambiguation in cross-language information retrieval. Information retrieval2(1), 71-82.
Al-Hashemi, R. (2010). Text Summarization Extraction System (TSES) Using Extracted Keywords" Int. Arab J. e-Technol. 1 (4), 164–168.
Bod, R. (2001). Memory-Based Models of Music Analysis: Evidence against the Gestalt Principles in Music. Proceedings International Computer Music Conference, Havana, Cuba.
Bod, R. (2002). A unified model of structural organization in language and music. JAIR, 7(1), 289–308.
Bod, R. (2012). Probabilistic Grammars for Music. ILLC: University of Amsterdam
Brants, T. (2003). Natural Language Processing in Information Retrieval. CLIN111.
Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association18(5), 544-551.
Browne, G. (2002). Automatic indexing and abstracting. Journal of the American Society for Information Society. [on-line]. Available: http://www. autoindexingautomatic indexing and abstracting.htm
Chen, H., Schatz, B., Ng, T., Martinez, J., Kirchhoff, A., & Lin, C. (1996). A parallel computing approach to creating engineering concept spaces for semantic retrieval: The Illinois Digital Library Initiative Project. IEEE Transactions on Pattern Analysis and Machine Intelligence18(8), 771-782.
Cope, D. (1992). Computer modeling of musical intelligence in EMI. Computer Music Journal16(2), 69-83.
Croft, W. B. (1995). NSF center for intelligent information retrieval. Communications of the ACM38(4), 42-43.
Diola, A. M., Lopez, J. T. T. O., Torralba, P. F., So, S., & Borra, A. (2004). Automatic Text Summarization. In Proceedings of the 2 nd National Natural Language Processing Research Symposium.
Hjørland, B. (2002). Epistemology and the socio‐cognitive perspective in information science. Journal of the American Society for Information science and Technology53(4), 257-270.
Hmeidi, I., Kanaan, G., & Evens, M. (1997). Design and implementation of automatic indexing for information retrieval with Arabic documents. Journal of the American Society for Information Science48(10), 867-881.
Kaiser, A. (1993). Computer Unterstue Ztes Indexieren in Intelligeten Information Retrieval systemen. Doktorat Dissertation. Fachbereich Informationswirt schaft, Wirtschafts universitaet Wien.
Kešelj, V., Peng, F., Cercone, N., & Thomas, C. (2003, August). N-gram-based author profiles for authorship attribution. In Proceedings of the conference pacific association for computational linguistics, PACLING (Vol. 3, pp. 255-264). sn.
Fred, L., & Ray, J. (1983). A generative theory of tonal music. The MIT Press.
Lewis, D. D., & Jones, K. S. (1996). Natural language processing for information retrieval. Communications of the ACM39(1), 92-101.
Liddy, E. D. (2003). Natural language processing. lnEncylopedia of library and information science 2nd. New York: Marcel Dekker.
Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.
Mohamed, A. A., & Rajasekaran, S. (2006, August). Improving query-based summarization using document graphs. In 2006 IEEE international symposium on signal processing and information technology (pp. 408-410). IEEE. Available at:https://www.researchgate.net/publication/ 232638359_Improving_Query-Based_Summarization_Using_Document_Graphs.
Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association18(5), 544-551. Available at: http://jamia.oxfordjournals.org/content/18/5/544
Nenkova, A., & McKeown, K. (2012). A survey of text summarization techniques. In Mining text data (pp. 43-76). Springer, Boston, MA.
Oramas, Sergio (2014). Harvesting and Structuring Social Data in Music Information Retrieval. Barcelona, Spain: Universitat Pompeu Fabra.
Van Rijsbergen, C. (1979). Information retrieval: theory and practice. In Proceedings of the Joint IBM/University of Newcastle upon Tyne Seminar on Data Base Systems (pp. 1-14). http://www.dcs.gla.ac.uk/Keith
Salton, G. & Mc Gill, M. J (1983). Introduction to Modern Information Retrieval, Mc Graw Hill, New York.
Sanderson, M. (2000). Retrieving with good sense. Information retrieval2(1), 49-69.
Schedl, M. (2013). On the Use of the Web and Social Media in Multimodal Music Information Retrieval. Postdoctoral Thesis (Habilitation).
Shakeri, H., Gholamrezazadeh, S., Salehi, M. A., & Ghadamyari, F. (2012). A new graph-based algorithm for Persian text summarization. In Computer science and convergence (pp. 21-30). Springer, Dordrecht.
Taghva, K., Beckley, R., & Sadeh, M. (2005, April). A stemming algorithm for the Farsi language. In International Conference on Information Technology: Coding and Computing (ITCC'05)-Volume II (Vol. 1, pp. 158-162). IEEE.
Temperley, D. (2007). Music and Probability. The MIT Press
Wang, J., & Oard, D. W. (2005, September). Clef-2005 cl-sr at maryland: Document and query expansion using side collections and thesauri. In Workshop of the Cross-Language Evaluation Forum for European Languages (pp. 800-809). Springer, Berlin, Heidelberg. http://www.informatik.uni-trier.de/~ley/db/conf/clef/clef2005.html#WangO05