نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علم اطلاعات و دانش‌شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، گروه علم اطلاعات و دانش شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، گروه علم اطلاعات و دانش شناسی، واحد یادگار امام خمینی (ره)، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار، گروه علم اطلاعات و دانش شناسی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی ، تهران، ایران

چکیده

هدف پژوهش حاضر طراحی مدل ارزیابی عملکرد سیستم مدیریت دانش در صنعت نرم‌افزار با استفاده از شبکه عصبی است. روش پژوهش بر اساس هدف از نوع کاربردی است و برای گردآوری داده‌ها از روش آمیخته با رویکرد اکتشافی استفاده شده‌است. ابتدا از روش کیفی با استفاده از مطالعات کتابخانه‌ای و مرور پیشینه‌های پژوهش در ارزیابی عملکرد مدیریت دانش نسبت به استخراج شاخص‌های مختلف پرداخته شده است. در مرحله دوم بر اساس داده‌های گردآوری‌شده، مطالعه‌ای کمی برای ‌تائید و تصدیق یافته‌های به‌دست‌آمده از مرحله کیفی انجام شد. برای مطالعه اکتشافی و استخراج مقوله‌های مربوطه به عوامل ارزیابی از روش فراترکیب (الگوی سندلوسکی و باروسو) استفاده شد. با روش دلفی فازی، با ابزار پرسشنامه و نظرسنجی از خبرگان به اعتبارسنجی و ارائه شاخص‌های نهایی پرداخته شد. روش پژوهش در قسمت کمی توصیفی -پیمایشی است. جامعه آماری پژوهش را تمامی کارشناسان توسعه‌دهنده‌ نرم‌افزار و خبرگان حوزه نرم‌افزار در دانشگاه‌ها و شرکت‌ها تشکیل دادند. حجم نمونه با روش نمونه‌گیری تصادفی ساده با فرمول کوکران 186 نفر انتخاب شد. به‌منظور گردآوری داده‌های کمی از پرسشنامه محقق‌ساخته (40 گویه‌ای) استفاده شد که گویه‌های آن برگرفته از نتایج تحلیل فراترکیب در مرحله اول بود. پایایی پرسش‌نامه‌ها با روش آلفای کرونباخ به ترتیب برای عوامل زیرساخت 89/0 و عوامل کارکردی 88/0 برآورد شد. جهت تحلیل داده‏ها در قسمت کمی از روش‏های تحلیل عاملی تأییدی استفاده شده است. 7 مقوله اصلی شامل عوامل فردی، عوامل سازمانی، فناوری و زیرساخت، عوامل کارکردی، ابزارهای مدیرت دانش، عوامل اقتصادی، ابزارهای مدیریت دانش و 29 مقوله فرعی شناسایی شدند. نوآوری پژوهش ساخت مدلی با استفاده از الگوریتم‌های شبکه عصبی است که توانایی پیش‌بینی شاخص ارزیابی عملکرد سیستم مدیریت دانش و تأثیر هر یک از شاخص‌ها با استفاده از شبکه عصبی در حوزه نرم‌افزار را دارد. نتایج به دست آماده از پرسش‌نامه برای ورودی مدل شبکه استفاده شده است، نتایج نشان داد که مؤلفه‌هایی مانند عوامل زیرساخت فناوری و عوامل کارکردی بر روی ارزیابی عملکرد مدیریت دانش در توسعه نرم‌افزار تأثیر بیشتری می‌گذارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing Knowledge Management System Performance Evaluation Model in the Software Industry Using Neural Network

نویسندگان [English]

  • Mostafa Pahlevanzadeh 1
  • Nadjla Hariri 2
  • Dariush Matlabi 3
  • Fahimeh Babalhavaeji 4

1 Ph.D. Student in Knowledge and Information Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Professor, Department of Knowledge and Information Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Associate Professor, Department of Knowledge and Information Science , Yadgar Imam Khomeini Branch , Islamic Azad University, Tehran, Iran

4 Associate Professor, Department of Knowledge and Information Science , Sciences and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Introduction

The purpose of the current research is to design a knowledge management system performance evaluation model in the software industry using a neural network. Based on the collected data, a quantitative study was conducted to confirm the findings obtained from the qualitative stage. For exploratory study and extraction of categories related to evaluation factors, the meta-combination method (Sandelowski and Barroso model) was used. The research method in the quantitative part is descriptive survey. The statistical population of the research was made up of all software developers and software experts in universities and companies. Findings: 7 main categories including individual factors, organizational factors, technology and infrastructure, functional factors, knowledge management tools, economic factors, knowledge management tools, and 29 sub-categories were identified. The innovation of the research is building a model using neural network algorithms that have the ability to predict the performance evaluation index of the knowledge management system and the impact of each of the indicators using a neural network in the field of software. Conclusion: The results obtained from the questionnaire have been used for the input of the network model, the results showed that components such as technology infrastructure factors and functional factors have a greater impact on the evaluation of knowledge management performance in software development.

Literature Review

In a research, they evaluated the performance of the knowledge management system in Iranian software companies. The results showed that the knowledge management system consists of 4 processes of identifying and creating, recording and maintaining, sharing and applying and internalizing knowledge. In a research, they designed a fuzzy inference system to evaluate the performance of the knowledge management system in the software development industry. The use of neural networks in evaluating the key factors of the knowledge management system in Iranian companies based in Alborz province was investigated. A research modeled an organizational knowledge management system based on artificial intelligence. Fuzzy theory was used to create knowledge extraction mechanism and reference model library from project model to dedicated reference model.

Methodology

The method used in this research is a mixed research method of exploratory type with a qualitative approach and meta-composite and Delphi methods. In the first stage, the meta-composite method was used to identify the main and sub-categories of the indicators, and then the validation and presentation of the final indicators were done with the fuzzy Delphi method. The current research method is practical in terms of purpose. The sample size was selected by simple random sampling method with Cochran's formula of 186 people. In the meta-combination method of the research, library sources and documents including articles, reliable and referable internet sources, as well as domestic and foreign scientific reports were used. For exploratory study and extraction of categories related to evaluation factors, the meta-combination method (Sandelowski and Barroso model) was used. Factors and dimensions of knowledge management system evaluation for which indicators are considered were provided to 20 members and experts. The implementation of the Delphi panel was carried out in two periods. Fuzzy Delphi method was used to screen and identify the final indicators and to answer the first and second questions of the research regarding the agreement of the experts of the research community regarding the obtained components, which includes software experts and knowledge management experts. 7 main categories including individual factors, organizational factors, technology and infrastructure, functional factors, knowledge management tools, economic factors, and 29 sub-categories were identified.  In order to collect quantitative data, a researcher-made questionnaire (40 items) was used, the items of which were taken from the results of the meta-composite analysis in the first stage. In this research, in order to check the reliability of the research questionnaire, Cronbach's alpha coefficient was estimated at 0.89 for infrastructure factors and 0.88 for functional factors, respectively.

Results

 In this research, the performance of the knowledge management system was evaluated with a neural network approach. Examining the results showed that the following components affect the evaluation of knowledge management performance in the software development industry. 1. Individual factors 2. Economic factors 3. Organizational factors 4. Knowledge management processes 5. Functional factors 6. Technological infrastructure factors 7. Knowledge management tools

Discussion

Solutions to improve the performance of knowledge management in the software development industry were presented: • Adjust the strategies in such a way that the creation of new knowledge, the application of new knowledge, its dissemination and sharing, and the storage and documentation of knowledge are explicitly considered. • Identifying influential people in the process of implementation and establishment of knowledge management, to improve the effective factors in the effective establishment of knowledge management more than in the past. • Developing procedures for documenting the experiences of experts in the software development industry on a continuous basis. • Managers and practitioners of the software industry should also consider parameters such as available budget, organizational culture, infrastructure, etc. • To provide the relevant managers and practitioners with a criterion for reviewing future policies and investments and help them make more appropriate decisions.

Conclusion

In this research, 29 primary indicators have been identified based on the research literature, which include: • Organizational culture for sharing and using knowledge • Organizational Structure • The physical environment • Organization strategy • Support of senior managers such as motivation and commitment • Supporting innovations and digital technologies • Specialized knowledge of software development • General knowledge in software development • Involvement of developers • Education • Being up-to-date in the fields of specialized software • Knowledge and awareness of the knowledge management system • Correct understanding of system design requirements • Portals and portals of knowledge such as the Internet and email and social networks • MIS, Expert, DSS systems • Data warehouse - knowledge warehouse • Search and recovery tools and dashboard • Data security • The degree of integration of organizational systems • Quality of knowledge • Document management • Data management and workflow • Process Management • Creation and acquisition of knowledge, transfer and sharing of knowledge • Acquisition and use of knowledge • Operating cost of the software • Cost of software support.

کلیدواژه‌ها [English]

  • Neural Network
  • Knowledge Management
  • Knowledge Management System Performance
  • Software Industry
آقا شاهی، بهروز، تحیری، هومان و دستغیبی فرد، غلامحسین. (1398). اولویت‌بندی فرایندهای مدیریت دانش سازمان در روش فرناندز با استفاده از سیستم فازی مبتنی بر قانون. پژوهشنامه پردازش و مدیریت اطلاعات، 35(3)، 633-662.
پهلوان‌زاده، مصطفی، حریری، نجلا، مطلبی، داریوش و باب‌الحوائجی، فهیمه. (1402). ارزیابی عملکرد سیستم مدیریت دانش در صنعت توسعه نرم‌افزار با استفاده از روش فراترکیب. فصلنامه بازیابی دانش و نظام‌های معنایی، 10(36)، 1-20.
تدریس حسنی، معصومه، امیری، مقصود، رحمان‌سرشت، حسین و یوسفلی، امیر.(1400). ارائه یک دسته بندی جامع از رویکردهای ارزیابی عملکرد و بررسی خالءهای تحقیقاتی موجود در آنها. فصلنامه علمی پژوهشی دانش حسابداری و حسابرسی مدیریت، 10 (73)، 285-301.
رئیسی وانانی، ایمان، تقوا، محمدرضا و امیر عشایری، دنیا. (1397). طراحی سیستم استنتاج فازی برای ارزیابی عملکرد سیستم مدیریت دانش در صنعت توسعه نرم‌افزار. فصلنامه مطالعات مدیریت کسب‌وکار هوشمند، 6 (24)، 5-36.
صارمی، محمود و حیدری، علی. (1390). ارائه رویکردی کیفی برای مدل‌سازی توان رقابتی بنگاه در کسب‌وکارهای مبتنی بر فناوری پیشرفته: موردمطالعه صنعت نرم‌افزار. مدیریت فناوری اطلاعات، 2 (5)، 53-70.
لطیفی، فریبا و موسوی، پرستو. (1387). ارزیابی عملکرد سیستم مدیریت دانش در شرکت های نرم افزاری ایران. پنجمین کنفرانس بین المللی مدیریت فناوری اطلاعات و ارتباطات در تهران، 14-28  https://civilica.com/doc/86532
درستکار احمدی، ناهید و شفیعی نیک‌آبادی، محسن. (1394). ارائه یک مدل هوشمند فازی برای ارزیابی فرآیندهای مدیریت دانش در زنجیره تأمین (موردمطالعه: شرکت ایران‌خودرو). چشم‌انداز مدیریت صنعتی، 5 (2)، 153-175.
Arbabi, Z., Yeganegi, K. J., & Obaid, A. (2020). Application of neural networks in evaluation of key factors of knowledge management system, Case Study: Iranian Companies Based in Alborz Province. Journal of Physics Conference Series, 1530(1):012111. DOI: 10.1088/1742-6596/1530/1/012111.
Fu, H., Chen, Y., & Jie Wang, G. (2020). Using a Fuzzy Analytic Hierarchy Process to Formulate an Effectual Tea Assessment System. Sustainability. https://doi.org/10.3390/su12156131.
Gardeazabal, A., Lunt, T., Jahn, M., Verhulst, N., Hellin, J., & Govaerts, B. (2021). Knowledge management for innovation in agri-food systems: a conceptual framework. Knowledge Management Research and Practice, 21(2), 303-315. DOI: 10.1080/14778238.2021.1884010.
Greccoa, C.H.S., Augusto, S.C., Souzaa, J.T., Carvalhoa, P.V.R., & d’Avila, A. L. (2021). A Methodfor the evaluation of knowledge management systems. Brazilian Journal of Radiation Sciences, 52 (31), 1-12. DOI: https://doi.org/10.15392/bjrs.v9i2B.1250 .
Gyemang, M., & Emeagwali, O. (2020). The roles of dynamic capabilities, innovation, organizational agility and knowledge management on competitive performance in telecommunication industry. Management Science Letters, 10 (4), 1533-1542.
 Kosklin, R., Lammintakanen, J., & Kivinen, T. (2023) Knowledge management effects and performance in health care: a systematic literature review. Knowledge Management Research & Practice, 21(4), 738-748. DOI: 10.1080/14778238.2022.2032434.
Li, M., Jin, L., & Wang, J. (2014). A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user's perspective in intuitionistic fuzzy environment. Applied soft computing, 21(1), 28-37. https://doi.org/10.1016/j.asoc.2014.03.008.
Ngai, E. W. T., & Chan, E. W. C. (2005). Evaluation of knowledge management tools using AHP. Expert Systems with Applications, 29(4), 889–899.
Palombo, H., Ziaie Tabari, A., Lende, D., Ligatti, J., & Xinming, O. (2020). An Ethnographic Understanding of Software (In) Security and a Co-Creation Model to Improve Secure Software Development. Sixteenth Symposium on Usable Privacy and Security, 205-220.
Rafi, N., Ahmed, A., Shafique, I., & Kalyar, M.N. (2021). Knowledge management capabilities and organizational agility as liaisons of business performance. South Asian Journal of Business Studies, 11(4), 394-417 https://doi.org/10.1108/SAJBS-05-2020- 0145.
Rossidis, I., & Belias, D. (2020). Combining Strategic Management with Knowledge Management: Trends and International Perspectives. International Review of Management and Marketing, 10 (2), 39-45.
Singh, V., Kumar, V., & Singh, V.B. (2023). A hybrid novel fuzzy AHP-TOPSIS technique for selecting parameter-influencing testing in software development. Decision Analytics Journal 6:100159, 1-15.
 Tan, L. P., & Wong, K. Y. (2017). A Neural Network Approach for Predicting Manufacturing Performance Using Knowledge Management Metrics. International Journal on Interactive Design and Manufacturing (IJIDeM), 48(1), 827–845.
Tavalaei, R., Haghigi Borojni, P., & Khalili, H. (2021). Investigating the impact of knowledge management on the strategic and operational performance of organizations through the use of the organizational excellence model 2020. Organizational Knowledge Management Quarterly, 4 (3), 141-174.
Wang, J., Ding, D., Liu, O., & Li, M. (2017). A synthetic method for knowledge management performance evaluation based on triangular fuzzy number and group support systems. Applied Soft Computing, 39, 11-20.
Zaim, H., Muhammed, S., & Tarim, M. (2019). Relationship between knowledge management processes and performance: Critical role of knowledgeutilization in organizations. Knowledge Management Research & Practice, 17(1), 24–38. https://doi.org/10.1080/14778238. 2018.1538669.
Zhang, J.W., & Wang, Y.J. (2010) The Research of Conceptual Models of Business Models Base on the Value of the Triangular Logic. Foreign Economics & Management, 6, 1-8.
References [In Persian]
Agha Shahi, B., Tahiri, H., & Dastgheibi Fard, G. (2018). Prioritization of organization's knowledge management processes in Fernandez's method using rule-based fuzzy system. Journal of Information Processing and Management, 35(3), 633-662. [In Persian]
Dorostkar Ahmadi, N., & Shafiei Nickabadi, M. (2014). Presenting a fuzzy intelligent model for evaluating knowledge management processes in the supply chain (case study: Iran Khodro Company). Industrial Management Perspectives, 5 (2), 153-175. [In Persian]
 Latifi, F., & Mousavi, P. (1387). Evaluation of knowledge management system performance in Iranian software companies. The 5th International Conference on Information and Communication Technology Management, Tehran, (pp. 110-124). https://civilica.com/doc/86532  [In Persian]
Mahmoudi, M., Jalali, M., & Akbari, M. (2022). Designing and explaining the readiness model for the implementation of food industry group strategies. Business Administration Researches, 13(15), 187-208. [In Persian]
Momeni, M., JamPerazemi, M., Hossinzadeh, M., & MehrAfzar, M.(2013). Presenting a new approach for evaluating knowledge management systems with gray relational analysis method. Production and Operations Management, 2(2), 55-72. [In Persian]
Pahlavanzadeh, M., Hariri, N., Matlabi, D., & Babal-Hawaeji, F. (2023). Evaluation of knowledge management system performance in the software development industry using metacombination method. Knowledge Retrieval and Semantic Systems Quarterly, 10(36), 1-20. [In Persian]
Raiisi Vanani, I., Taqwa, M.R., & Amir Ashairi, D. (2017). Designing a fuzzy inference system to evaluate the performance of the knowledge management system in the software development industry. Quarterly Journal of Intelligent Business Management Studies, 6(24), 5-36. [In Persian]
Saremi, M., & Heydari, A. (1390). Providing a qualitative approach for modeling the competitive power of the company in businesses based on advanced technology: the case study of the software industry. Information Technology Management, 2(5), 53-70. [In Persian]
Tadris Hassani, M., Amiri, M., Rahman Seresht, H., & Yousefali A. (2022). Providing a comprehensive classification of performance evaluation approaches and examining research gaps in them. Scientific Quarterly Journal of Management Accounting and Auditing Knowledge, 10 (73), 285-301. [In Persian]