نوع مقاله : مقاله مروری

نویسندگان

1 دانش‌آموخته دکتری علم اطلاعات و دانش‌شناسی، دانشگاه تهران، تهران، ایران

2 استاد، گروه علم اطلاعات و دانش شناسی، دانشگاه قم، قم، ایران

3 دانشجوی دکتری علم اطلاعات و دانش شناسی، دانشگاه قم، قم، ایران

چکیده

در فضایی که توسعه هوش مصنوعی و تسهیل تعامل بین انسان و ماشین به‌طور فزاینده موردتوجه است، چالش‌های زبانی به‌عنوان نقاطی مهم در این مسیر بیش‌ازپیش خودنمایی می‌کنند. نقش مهم زبان در انتقال و بازیابی اطلاعات را نمی‌توان فارغ از نحو و معنای آن بررسی نمود. تبیین و تشریح پژوهش‌های این حوزه از ابعاد کمی و کیفی و درک گرایش‌های پژوهشگران می‌تواند گام مهمی در درک اهمیت نحو و معنا در ساختارهای ارتباطی در محیط‌های نوین جستجو و بازیابی اطلاعات باشد. بر همین اساس این مطالعه که از نوع توصیفی - تحلیلی است، با هدف تحلیل کیفی و کمی مطالعات حوزه نحو و معنا در بازیابی اطلاعات انجام شده است. به‌منظور انجام این پژوهش از روش مرور نظام‌مند آویارد استفاده شد. تحلیل مطالعات این حوزه نشان داد که این مطالعات بر سه محور اصلی نحو و معنا در ارتباط با سازمان‌دهی اطلاعات، بازیابی اطلاعات و جستجوی اطلاعات تمرکز دارند. درمجموع تحلیل مطالعات منتخب نشان می‌دهد پرداختن به بحث نحو و معنا در ارتباط با سازمان‌دهی اطلاعات و همچنین تبیین و واکاوی وجوه نظری نحو و معنا در بازیابی اطلاعات از مواردی است که نیاز به پژوهش بیشتر، خصوصاً مطالعات بین‌رشته‌ای بیشتر از سوی پژوهشگران حوزه‌های زبان‌شناسی، علم اطلاعات و علوم رایانه دارد. نتایج پژوهش حاضر می‌تواند رهنمودهایی برای متخصصان حوزه‌های مختلفی داشته باشد که به‌نوعی با ذخیره و بازیابی اطلاعات سروکار دارند. به‌علاوه محورهای شناسایی‌شده و روش‌ها و رویکردهای به‌کار رفته و شکاف‌های پژوهشی شناسایی‌شده راهگشای پژوهشگران در انجام مطالعات آتی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Syntax and Semantics: Research Trends and Directions

نویسندگان [English]

  • Hoda Homavandi 1
  • Yaghoub Norouzi 2
  • Bent-ol hoda Khabbazan 3

1 Ph.D. Graduate of Knowledge and Information Sciences, University of Tehran, Tehran, Iran

2 Professor, Department of Knowledge & Information Science, University of Qom, Qom, Iran

3 PhD Candidate in Knowledge & Information Science, University of Qom, Qom, Iran

چکیده [English]

Introduction

Recently, the development of artificial intelligence and human-computer interaction has highlighted the increasing importance of language challenges in information retrieval. The crucial role of language in disseminating, accessing, and retrieving information cannot be studied independently of syntax and semantics. Explaining and describing research in this field from both quantitative and qualitative perspectives, and understanding researchers' trends, is an important step in comprehending the significance of syntax and semantics in communication structures within modern information search and retrieval environments. Consequently, in this descriptive and analytical study, we conducted qualitative and quantitative analyses of studies in the field of syntax and semantics in information retrieval.

Literature Review

In recent years, there has been a lot of interdisciplinary research focusing on investigating the impact of language on the interaction between users and the web environment. These studies have discussed the language from various perspectives and have explored information retrieval across different types of information media, including web databases, search engines, commercial websites, and libraries. Tapsai (2019), Norouzi and Hamavandi (2018), Hammo (2009), Lazarinis (2008), Ofoghi, Yearwood & Ghosh (2006) have focused on different languages such as Persian, English, Arabic, and Greek. The findings show that the syntax and morphology, as well as the semantics of searched terms and phrases, have a significant impact on the retrieval of results. In addition, search tools tend to rely more on the general form of words instead of focusing on the real needs of users in order to improve the search process.
Due to the huge amount of information on the World Wide Web and the challenges related to information retrieval, researchers and software developers have turned to the Semantic Web to keep up with the changes. The Semantic Web has provided a large amount of structured and machine-understandable information on a wide range of topics (Guha, McCool & Miller, 2003). Semantic models perform well in identifying and recognizing synonyms, similar words, and semantic frameworks. Therefore, one of the most important challenges in the field of information storage and retrieval is to bridge the gap between the language used by information seekers and information providers (Rezaee Sharifabadi et al., 2010).
The current study aims to systematically review previous research findings on syntax and semantics in information storage and retrieval across different contexts. Each context represents different dimensions of knowledge representation systems, from traditional to semantics. Upon reviewing the research, it was found that no systematic review has been conducted with a focus on syntax and semantics in the field of information retrieval.

Methodology

In this qualitative research using Aveyard’s systematic review method, we aim to address the following questions:

What is the statistical status of studies in the field of syntax and semantics in storing and retrieving information?
What are the main subject areas that researchers have focused on in studies related to syntax and semantics in storing and retrieving information?
What research methods and approaches have researchers employed in this field?
What are the research gaps and areas that require further study in this field?

To gather relevant sources from information databases, we selected search keywords based on the research questions. Then, we used search strategies and various operators to combine the keywords and phrases, ensuring a comprehensive and effective search in Persian databases such as Magiran, Irandoc, SID, NoorMagz, ISC, and Civilica, as well as databases including Scopus, Emerald, ProQuest, and Google Scholar. There was no time limitation for the search. We recorded accepted sources such as articles and theses that were relevant and valid. By removing irrelevant and duplicate sources, we selected 12 Persian sources and 42 English sources. After categorizing, the studies were analyzed according to the type of source, research method, and tool. The results of the analysis of the studies were presented in the form of tables and graphs.

Results

The selected studies were categorized into three groups (their characteristics were described in detail): information retrieval, information organization, and information search based on the analysis of keywords and subjects raised in the sources. The results of the study revealed that among the 54 reviewed studies, Iranian researchers had conducted the most research in the field of syntax and semantics in information retrieval, with 12 studies. The United States followed with 5 studies, and China and Vietnam tied for third place with 4 studies each. The majority of the studies focused on syntax and semantics in information retrieval.

Discussion

Analysis of 54 selected studies has shown that these studies were conducted over a period of 26 years. The oldest study was included in the review back to 1997, while the most recent one is from 2022. This shows the dynamic nature of the field under investigation and demonstrates how it is constantly changing and being influenced by the advancement of web technologies. Furthermore, a thematic analysis of the research, based on the studies' keywords, reveals that "Ontology," as a tool of the semantic web, is closely linked to the semantic and syntax aspects of language in information retrieval.
Moreover, in a total of 54 studies, the majority were experimental (19), followed by applied (15) and analytical (9). Additionally, there were 6 studies that combined applied and analytical methods. Content analysis and comparative analysis each had 2 instances, while case studies were the least frequent with only 1 case. These studies have utilized tools such as ontology, search engines, and techniques including natural language processing, annotation, tagging, and indexing.
The discussion about exploring syntax and semantics in relation to information retrieval across different languages is believed to make a significant contribution to the development of future research literature in this field. This is because users’ native language plays a central role in forming search terms for information retrieval, based on subjective meanings, context, and content. Considering this point can effectively enhance information retrieval systems.

Conclusion

Although many studies have addressed various aspects of syntax and semantics in information retrieval, more research is needed to investigate syntax and semantics in information organization. It is also important to delve into and analyze their theoretical aspects in information retrieval, especially through interdisciplinary studies.
Moreover, the interconnectedness of various areas of study demonstrates the close relationship between syntax and semantics and linguistic issues in nearly every field that involves organizing, storing, and retrieving information. These areas include the study of syntax and semantics in relation to environmental sensors, indexing, identification and summarization of texts, plagiarism detection, natural language processing, repositories, improvement of query users and data retrieval in repositories and search engines, metadata enrichment, and image retrieval. The results of this research, such as its main themes, identified methods and approaches, and research gaps, can offer valuable insights for future studies.

کلیدواژه‌ها [English]

  • Syntax and Semantics
  • Information Retrieval
  • Information Search
  • Research Trends
آخشیک، سمیه سادات، نگهداری، خدیجه و امامی، علیرضا. (1401). خط فارسی در گنج: واکاوی تأثیر مسائل صرف، معنا و رسم‌الخط بر بازیابی اطلاعات در پایگاه اطلاعات علمی ایران. علوم و فنون مدیریت اطلاعات، 8 (1)، 193 -220.
آویارد، هلن. (2007). چگونه یک تحقیق مروری انجام دهم؟: راهنمای کاربردی نگارش مقاله و پایان‌نامه در علوم اجتماعی و پزشکی. ترجمه پوریا صرامی فروشانی و فردین علی پور گراوند (1390). تهران: جامعه شناسان.
ابوترابی گودرزی، حامد. (1390). بررسی و امکان‌سنجی بهبود سیستم‌های جستجوی اطلاعات فارسی-انگلیسی ]پایان‌نامه کارشناسی ارشد، دانشگاه شاهد، تهران[.
 دری، راحله. (1393). مقایسه و ارزیابی موتورهای جستجوی معنایی. پژوهشنامه پردازش و مدیریت اطلاعات، 30 (2)، 467-487.
رضایی‌‌شریف‌‌آبادی، سعید، خسروی، عبدالرسول، حاجی زین‌‌العابدینی، محسن. (1386). امکان‌‌سنجی مهار مستندات موضوعی پزشکی در پایگاه‌‌های اطلاعاتی فارسی موجود بر روی وب. مطالعات تربیتی و روان‌‌شناسی، 8 (3)، 183-201.
رفیعی، امیررضا. (1394). استخراج روابط هم معنایی و تضاد] پایان‌نامه کارشناسی ارشد، مرکز زبان‌ها و زبان‌شناسی، دانشگاه صنعتی شریف، تهران[.
صدوقی، فرحناز، ولی‌نژادی، علی، حسن‌زاده، حافظ محمد، بورقی، حمید و پاسیار، پریسا. (1401). چالش‌های بازیابی معنایی تصاویر و کاربست نوین اصطلاح‌نامه‌ها. پژوهشنامه پردازش و مدیریت اطلاعات، 27 (3)، 641-666.
قیومی، مسعود. (۱۳۹۸). تعیین خودکار معانی واژه‌های فارسی با استفاده از تعبیه معنایی واژه. پژوهشنامه پردازش و مدیریت اطلاعات، ۳۵ (۱)، 25-50.
کامیار، حسین. (1390). روش جدید وزن دهی معنایی به کلمات در کاربردهای پردازش متن ]پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، مشهد[.
کریمی، المیرا، بابایی، محمود و حسینی بهشتی، ملوک السادات. (1397). تحلیل رفتار اصلاح پرس و جوی کاربر براساس ویژگی‌های معنایی: تحلیل لاگ کاربران پایگاه اطلاعات گنج (ایرانداک). تعامل انسان و اطلاعات، ۵ (۳)، 1-14.
محمدیان جدول قدم، فراز. (1391). خلاصه‌سازی خودکار متون فارسی به روش معنایی ]پایان‌نامه کارشناسی ارشد، دانشگاه اصفهان، اصفهان[.
ذوالفقار کندری، زهره و موسوی میانگاه، طیبه. (1394). ابهام زدایی واژگانی صفات مبهم در ترجمه ماشینی: بررسی پیکره بنیاد. پژوهشنامه پردازش و مدیریت اطلاعات، 30 (3)، 719-735.
نصیری، طاهر و خندان، محمد. (1395). منطق ریاضی برتراند راسل و دلالت‌های آن در سازمان‌دهی اطلاعات و سازه‌های موضوعی آن. مطالعات ملی کتابداری و سازماندهی اطلاعات، 27 (1)، 7- 24.
نصیری، طاهر، ریاحی نیا، نصرت، نشاط، نرگس، شقاقی، مهدی و رسولی پور، رسول. (1400). معناشناسی کارناپ و کاربست آن در بازیابی آنتولوژیک اطلاعات. تعامل انسان و اطلاعات، ۸ (۳)، 1-8.
نوجوان آقدرق، باقر. (1392). طراحی سامانه‌ای برای شناسایی جملات مشابه برای استفاده در خلاصه‌سازی چند سنده] پایان‌نامه کارشناسی ارشد، موسسه آموزش عالی نبی اکرم[.
نوروزی، یعقوب. (۱۳۹۸). بافت و معنا در بازیابی اطلاعات: با تأکید بر زبان مادری. پژوهشنامه پردازش و مدیریت اطلاعات، ۳۵ (۱)، 1-24.
ویکری، برایان و ویکری، الینا. (1989). علم اطلاع‌رسانی در نظر و عمل. ترجمه عبدالحسین فرج پهلو (1380). مشهد: دانشگاه فردوسی مشهد.
هوشیار، مژگان. (1394). مقایسه قدرت انواع بافتار متن در ابهام‌زدایی معنایی از هم نویسه‌های انگلیسی] پایان‌نامه کارشناسی ارشد، دانشگاه شیراز[.
Akmal, S., & Batres, R. (2011, December). Ontology-based semantic similarity measures for product-service system design. In 2011 IEEE/SICE International Symposium on System Integration (SII) (pp. 932-937). IEEE
Barresi, S. (2010). Semantic based indexing technique for optimisation and intelligent document representation: application to structured and unstructured document clustering [Doctoral dissertation, University of Salford].‏
Batanović, V., & Bojić, D. (2014). Evaluation and classification of syntax usage in determining short-text semantic similarity. Telfor Journal, 6(1), 64-68.‏
Bokaei Hosseini, M., Slavin, R., Breaux, T., Wang, X., & Niu, J. (2020). Disambiguating requirements through syntax-driven semantic analysis of information types. In Requirements Engineering: Foundation for Software Quality: 26th International Working Conference, REFSQ 2020, Pisa, Italy, March 24–27, 2020, Proceedings 26 (pp. 97-115). Springer International Publishing.
Chen, Y. N. (2015). A RDF-based approach to metadata crosswalk for semantic interoperability at the data element level. Library hi tech, 33(2), 175-194
Dang, N., & Tuyen, D. T. T. (2009). Natural language question answering model applied to document retrieval system. World Academy of Science, Engineering and Technology, 51, 36-39.
Durbha, S. S., King, R. L., Amanchi, S. K., Bheemireddy, S., & Younan, N. H. (2009, December). Information Services and Middleware for the Coastal Sensor Web. In 2009 IEEE International Conference on Data Mining Workshops. 656-661. IEEE
Fersini, E., & Sartori, F. (2012). Semantic storyboard of judicial debates: a novel multimedia summarization environment. Program, 46(2), 199-219.
Gamallo, P., Gasperin, C., Agustini, A., Lopes, G. P., & de Lima, V. L. S. (2005). Using Syntax-based methods for extracting semantic information. Linguistica Computazionale, Pisa-Roma, 22, 201-229.
Gan, K. H., & Phang, K. K. (2017). A semantic-syntax model for XML query construction. International Journal of Web Information Systems, 13(2), 155–172.
Guha, R., McCool, R., & Miller, E. (2003, May). Semantic search. In Proceedings of the 12th international conference on World Wide Web (pp. 700-709).
Gupta, C. (2011). Semantic search for grid resources and scientific metadata using an ontological framework. State University: Binghamton.
Hammo, B.H. (2009). Towards enhancing retrieval effectiveness of search engines for diacritisized Arabic documents. Information Retrieval, 12(3), 300 -323.
Homenda, W. (2004). Information structuring in natural language communication: Syntax versus semantic. In Artificial Intelligence and Soft Computing-ICAISC 2004: 7th International Conference, Zakopane, Poland, June 7-11, 2004. Proceedings 7,872-878. Springer Berlin Heidelberg.
Hussan, B. K. (2020). Comparative study of semantic and keyword based search engines. Adv. Sci. Technol. Eng. Syst. J, 5 (1), 106 -111.
Khan, A. A. (2018). Exploiting Linked Open Data (LoD) and Crowdsourcing-based semantic annotation & tagging in web repositories to improve and sustain relevance in search results [Doctoral dissertation, University of Southampton].
Kovačević, Ž. (2022). Automatic Compiler/Interpreter Generation from Programs for Domain-Specific Languages Using Semantic Inference [Doctoral dissertation, Univerza v Mariboru (Slovenia)].
Lazarinis, F. (2008). Improving concept-based web image retrieval by mixing semantically similar Greek queries. Program: electronic library and information systems, 42(1), 56-67
Lin, W. Y., Peng, N., Yen, C. C., & Lin, S. D. (2012, July). Online Plagiarized Detection Through Exploiting Lexical, Syntax, and Semantic Information. In Proceedings of the ACL 2012 System Demonstrations, 145-150.‏
Luis Morato, J., Sánchez-Cuadrado, S., Dimou, C., Yadav, D., & Palacios, V. (2013). Evaluation of semantic retrieval systems on the semantic web. Library hi tech, 31(4), 638-656.
Meng, D., & Huang, X. (2006, October). An Interactive Intelligent Search Engine Model Research Based on User Information Preference. In 9th Joint International Conference on Information Sciences (JCIS-06). Atlantis Press.
Minker, W. (2004). Introducing Syntax Information in a Stochastically-Based Semantic Case Grammar Parser. International Journal of Speech Technology, 7, 45-54. DOI:10.1023/B:IJST.0000004807.22285.36
MK, Y. I. A., & Mohad Noah, S. A. (2017). Semantic text-based image retrieval with multi-modality ontology and DBpedia. The Electronic Library, 35(6), 1191-1214
Nakov, P. I. (2007). Using the web as an implicit training set: Application to noun compound syntax and semantics. University of California: Berkeley
Navarro‐Galindo, J. L., & Samos, J. (2012). The FLERSA tool: adding semantics to a web content management system. International Journal of Web Information Systems, 8 (1), 1-10.
Nguyen, H. M., Nguyen, H. Q., Tran, K. N., & Vo, X. V. (2015). GeTFIRST: ontology-based keyword search towards semantic disambiguation. International Journal of Web Information Systems, 11 (4), 442-467.
Nguyen, T., & Phan, T. (2008). A hybrid solution of ontology‐based query expansion. International Journal of Web Information Systems, 4 (2), 215-227.
Nguyen, Q. M., & Cao, T. D. (2015). A novel approach for automatic extraction of semantic data about football transfer in sport news. International Journal of Pervasive Computing and Communications, 11(2),233-252.
Norouzi, Y., & Homavandi, H. (2018). Image search and retrieval problems in web search engines: A case study of Persian language writing style challenge. Online Information Review, 42 (6),752-767.
Ofoghi, B., Yearwood, J., & Ghosh, R. (2006, January). A semantic approach to boost passage retrieval effectiveness for question answering. In Proceedings of the 29th Australasian Computer Science Conference- 48, 95-101.
Oliveira, B. C., Huf, A., Salvadori, I. L., & Siqueira, F. (2019). Ontogenesis: an architecture for automatic semantic enhancement of data services. International Journal of Web Information Systems, 15(1), 2-27.
Phyo, S. S. (2022). Content analysis-based documentation and exploration of research articles. Data Technologies and Applications, 56(1), 24-43.
Poullet, L., Pinon, J. M., & Calabretto, S. (1997, July). Semantic structuring of documents. In Proceedings of the Third Basque International Workshop on Information Technology-BIWIT'97-Data Management Systems (pp. 118-124). IEEE.‏
Ramada, M., Silva, J. C., & DE SÁ Leitao-Junior, P. (2014). A method for semantic analysis of keyword-based queries to access information in web databases. In Proceedings of the IADIS International Conference WWW/Internet,35-42.
Roy, S. D., & Zeng, W. (2014). Cognitive canonicalization of natural language queries using semantic strata. ACM Transactions on Speech and Language Processing (TSLP), 10(4), 1-30.
Sayed, A., & Al Muqrishi, A. (2016). CASONTO: An efficient and scalable Arabic semantic search engine based on a domain specific ontology and question answering. International Journal of Web Information Systems, 12(2), 242-262.
Sharma, S., Lather, J. S., & Dave, M. (2015). A Novel Framework for Semantic Discovery of Web Services using Integrated Semantic Model. INFOCOMMUNICATIONS JOURNAL, 7(2), 10-18.
Solomou, G., & Koutsomitropoulos, D. (2015). Towards an evaluation of semantic searching in digital repositories: a DSpace case-study. Program, 49 (1), 63-90.
Stojanovic, N. (2005). On the conceptualisation of the query refinement task. Library Management, 26(4/5), 281-294.
Sung, H. Y., & Chi, Y. L. (2021). Applications of Semantic Web in integrating open data and bibliographic records: a development example of an infomediary of Taiwanese indigenous people. The Electronic Library, 39(2), 337-353.
Tang, Z., Zhu, L., Le, Y., Li, K., & Cai, C. (2019, August). Fusing Syntax and Word Embedding Knowledge for Measuring Semantic Similarity. In 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 359-366. IEEE
Tapsai, Ch. (2018). Information Processing and Retrieval from CSV File by Natural Language. IEEE 3rd International Conference on Communication and Information Systems (ICCIS), Singapore. 212-216. DOI: 10.1109/ICOMIS.2018.8644947.
Trillo, R., Gracia, J., Espinoza, M., & Mena, E. (2007). Discovering the Semantics of User Keywords. J. Univers. Comput. Sci., 13(12), 1908-1935.
Uciteli, A., Goller, C., Burek, P., Siemoleit, S., Faria, B., Galanzina, H., Weiland, T., Drechsler-Hake, D., Bartussek, W. & Herre, H. (2014). Search Ontology, a new approach towards Semantic Search. in FoRESEE: Future Search Engines 44. annual meeting of the GI Stuttgart - GI Edition Proceedings LNI, Kollen:Lecture Notes in Informatics, P-232, 667-672.
Vani, K., & Gupta, D. (2018). Integrating syntax‐semantic‐based text analysis with structural and citation information for scientific plagiarism detection. Journal of the Association for Information Science and Technology, 69(11), 1330-1345.
Xu, D., Jiang, S., & Qi, Y. (2011). A New Matching Method Based on Improved Semantic Distance. In 2011 International Conference on Internet Technology and Applications (pp. 1-4). IEEE.
Zhou, Y. (2022). Natural language processing with improved deep learning neural networks. Scientific Programming, 2022 (1), 6028693.
References [In Persian]
Akhshik, S. S., Negahdari, K., & Emami, A. (2022). Persian Writing in GANJ: Investigating the Impact of Morphology, Semantics, and Writing Style on Iran's Treasure of Scientific and Technical Information. Sciences and Techniques of Information Management, 8(1), 193-220. DOI: 10.22091/stim.2021.6418.1505 [In Persian]
Aveyard, H. (2007). Doing a Literature Review in Health and Social Care. Translated by Pouria Sarami Forooshani & Fardin Alipour Gravand (2011). Tehran: Jameshenasan. [In Persian]
Abutorabi Gudarzi, H. (2012). Persian-English Cross-Language Information Retrieval: survey and improvement feasibility [Masters Thesis, Shahed University, Tehran] [In Persian]
Dorri, R. (2015). Comparison and Evaluation of Semantic Search Engines. Iranian Journal of Information Processing and Management, 30(2), 467-490. DOI: 10.35050/JIPM010.2015.044 [In Persian]
Rezai-Sharifabadi, S., Khosravi, A., Haji Zainalabedini, M. (2007). The Feasibility of Subject Authority Control of Persian Medical Databases available on the Web. Educational and Psychological Studies, 8(3), 183-201. [In Persian]
Rafiee, A.R. (2015).  Synonym and Antonym Extraction [Masters Thesis, Languages and Linguistics Center, Sharif University of Technology, Tehran] [In Persian]
Sadoughi, F., Valinejadi, A., Hassanzadeh, H. M., Bouraghi, H., & Pasyar, P. (2012). Image Semantic Retrieval Challenges and Thesauri Modern Applications. Iranian Journal of Information Processing and Management, 27(3), 641-666. [In Persian]
Ghayoomi, M. (2019). Identifying Persian Words Senses Automatically by Utilizing the Word Embedding Method. Iranian Journal of Information Processing and Management, 35(1), 25-50. DOI: 10.35050/JIPM010.2019.001 [In Persian]
Kamyar, H. (2011). Novel Semantic Term Weighting Approach in Text
Processing Applications [Masters Thesis, Ferdowsi University of Mashhad, Mashhad] [In Persian]
Karimi, E., Babaee, M., Hosseini Beheshti, M. (2018). Analysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc). Human Information Interaction, 5 (3), 1-14. [In Persian]
Mohammadian Jadval Ghadam, F. (2012). Provide a method for antomatic text Summarization Farsi [Masters Thesis, University of Isfahan, Isfahan] [In Persian]
Zolfaghar Kondori, Z., & Mosavi Miangah, T. (2015). Lexical Disambiguation of Polysemeous Adjectives in MT: A Corpus Based Study. Iranian Journal of Information Processing and Management, 30(3), 719-735. DOI: 10.35050/JIPM010.2015.030 [In Persian]
Nassiri, T., & Khandan, M. (2016). Bertrand Russell’s Mathematical Logic and Its Implications in Information Organization and Subject Headings. Librarianship and Information Organization Studies, 27(1), 7-24. [In Persian]
Nasiri, T., Riahinia, N., Neshat, N., Shaghaghi, M., Rasoli Poor, R. (2021). Carnapean Modal Semantics and its Implications for Ontology-Based Information Retrieval. Human Information Interaction, 8 (3), 1-8.
URL: http://hii.khu.ac.ir/article-1-3014-fa.html [In Persian]
Nojavan Aghdaragh, B. (2013). Similar sentences detection system for Multi - document summarization [Masters Thesis, University College of Nabi Akram] [In Persian]
Norouzi, Y. (2019). Context and Meaning in Information Retrieval: Emphasis on Mother Tongue. Iranian Journal of Information Processing and Management, 35(1), 1-24. DOI: 10.35050/JIPM010.2019.063 [In Persian]
Vickery, A., & Vickery, B. C. (1989). Information Science in Theory and Practice. Translated by Abdulhossein Farajpahlou (1380). Mashhad: Ferdowsi University of Mashhad. [In Persian]
Hooshyar, M. (2016). The comparison of powers of different kinds of text
contexts in sense disambiguation of English homographs [Masters Thesis, Shiraz University, Shiraz] [In Persian]