نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم سیاسی و روابط بین‌الملل، دانشگاه علامه طباطبائی، تهران، ایران

2 استادیار، گروه علوم سیاسی، دانشگاه مالک اشتر، تهران، ایران

چکیده

هدف از انجام این پژوهش تحلیل کارکردپذیری استاندارد خدمات مکان‌یاب اطلاعات دولتی (گیلز) در توسعه دولت هوشمند بود که با استفاده از روش تحلیل محتوای کیفی انجام شد. جامعه آماری این پژوهش عناصر فراداده‌ای خدمات مکان‌یاب اطلاعات دولتی و نیز مؤلفه‌های دولت هوشمند بود. برای گردآوری داده‌های موردنیاز پژوهش از روش اسنادی، مشاهده و ابزار سیاهه وارسی استفاده شد. یافته‌های این پژوهش نشان داد، مؤلفه‌های اصلی دولت هوشمند در 18 محور با 75 مؤلفه جزئی دسته‌بندی شده‌اند. برای ایجاد یک دولت هوشمند مؤلفه‌هایی همانند فناوری اطلاعات، امنیت سایبری، شفافیت و دسترسی، هویت دیجیتالی، حریم خصوصی و امنیت داده‌ها، میان‌کنش‌پذیری، ملاحظات اخلاقی و قانونی، سیاست‌گذاری مناسب، زیرساخت‌های فنی و توانمندسازی دیجیتالی مطرح شده‌اند. عناصر به‌کاررفته در استاندارد گیلز در هشت دسته کلی قرار گرفته‌اند که عبارت‌اند از عناصر ساده توصیف، عناصر توصیف موضوعی، یو.آر.آی.‌ها، قالب‌های منابع و ویژگی‌های فنی، جزئیات مدیریتی، فراداد‌ه‌های مدیریتی، منشأ/مرجع و شرایط دسترسی/ حق مؤلف. هر یک از این دسته‌ها خود از چندین عنصر اصلی و فرعی تشکیل شده‌اند. نیز یافته‌های پژوهش نشان داد، خدمات مکان‌یاب اطلاعات دولتی در ابعاد گوناگونی می‌تواند در توسعه دولت هوشمند استفاده شود. یکی از نقاط قوت این استاندارد که کارکردپذیری آن را در دولت هوشمند افزایش می‌دهد، استفاده از فراداده‌های توصیفی و مدیریتی مناسب برای دسترسی به داده‌های دولتی است. تعیین و توصیف فراداده‌های موردنیاز (همانند عنوان، پدیدآور، قالب، نوع داده و جز آن‌ها)، استفاده از فراداده، ذخیره‌سازی فراداده‌ها، مدیریت و نگهداری فراداده، تعیین دسترسی‌ها و مجوزها از مهم‌ترین کاربردهای خدمات مکان‌یاب اطلاعات دولتی در دولت هوشمند است. ازآنجایی‌‌که ثبت فراداده‌های مناسب و تسهیل دسترسی به اطلاعات موردنیاز شهروندان یکی از مؤلفه‌های اصلی دولت هوشمند است، خدمات مکان‌یاب اطلاعات دولتی می‌تواند نقش بسزایی در مدیریت داده و شناسایی داده‌های مرتبط و حفاظت از آن‌ها ایفا نماید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Study on Usability of Government Information Locator Service (GILS) in Developing Smart Government

نویسندگان [English]

  • Faramarz Sahraei 1
  • Seyed Majid Ebnoreza 2

1 Assistant Professor, Department of Political Sciences, Allameh Tabataba’i University, Tehran, Iran

2 Assistant Professor, Department of Political Sciences, Malek Ashtar University of Technology, Tehran, Iran

چکیده [English]

Introduction
In recent years, the development and digitization of various government sectors and the necessity for smartening processes have garnered significant attention. These transformations have led to the evolution of smart government as a subsequent step to e-government, mobile government, or open government. One of the components that holds great importance in smart government is the utilization of modern metadata standards. Data management standards in smart government are deemed essential to ensure stability, interoperability, and security within digital government systems and services. One of these standards is the Government Information Locator Service (GILS), the applicability of which in smart government has been examined.
Research Question(s)
In this research, the following questions were considered:
- What are the main components of smart government?
- What elements and layers do the Government Information Locator Service (GILS) have?
- What is the applicability of the Government Information Locator Service (GILS) in smart government?

Literature Review

Many studies have been conducted regarding GILS, each examining various aspects of this standard. Notable works include those by Kalantari and Shahpari (2016); Karimi Isfahani and Khani (2022); Torabzadeh and Poureisa (2022); Irhamni et al. (2015); Pasek (2017); Guo et al. (2017); Battista et al. (2017); Kaplan and Gunter (2020); and Andrews and Duhon (2021). For instance, in their research, Torabzadeh and Poureisa (2022) examined the role of the National Information Exchange Model in smart government. Likewise, Anders and Duhon 2021) focused on the integration of location-based public information services with new data from the U.S. government in their study.

Methodology

This research is applied in nature and was conducted using qualitative content analysis. The statistical population of this study consisted of the components of smart government and the elements of location-based public information services. For gathering the necessary data, both documentary and observational methods were utilized. In the documentary method, relevant research and documents were reviewed to identify the components of smart government. By consulting reliable citation and information databases such as Web of Science, Scopus, Google Scholar, ScienceDirect, the Iranian Scientific Journals database (Magiran), and searching for keywords like smart government, government modernization, smart government components, innovation, digitization, smart city, and others, combined with Boolean operators, relevant studies were identified. Initially, 178 articles were identified. After filtering the identified research, removing duplicates, and applying inclusion and exclusion criteria (such as the relevance of the article's subject, eliminating non-research sources, reviewing article abstracts, etc.), suitable sources for extracting the components of smart government were identified, resulting in 43 articles being analyzed. In the observational phase, by examining various sections and components of GILS, the main and detailed elements of this standard were identified. Subsequently, using a checklist tool, the alignment between the elements of GILS and the components of smart government was established.

Results

The findings of this research showed that the main components of the smart government are grouped into 18 axes with 75 partial components. To create a smart government, components such as information technology, cyber security, transparency and access, digital identity, privacy and data security, interoperability, ethical and legal considerations, appropriate policy, technical infrastructure, and digital empowerment have been proposed. The elements used in the GILS standard are placed in eight general categories, which are: simple description elements, subject description elements, URIs, resource formats and technical features, administrative details, administrative metadata, source/reference, and access/copyright conditions. Each of these categories consists of several main and sub-elements. Also, the findings of the research revealed that the Government Information Locator Service can be used in the development of a smart government in various dimensions. One of the strengths of this standard, which increases its functionality in the smart government, is the use of appropriate descriptive and management metadata to access government data. Determining and describing the required metadata (such as the title, creator, format, data type, etc.), using metadata, storing metadata, managing and maintaining metadata, and determining access and permissions are among the most important applications of the Government Information Locator Service in the smart government. Since registering appropriate metadata and facilitating access to information needed by citizens is one of the main components of a smart government, the government information service finder can play a significant role in data management and identification of related data and their protection.

Discussion

The findings of this research indicated that GILS has a high functionality in data management, and metadata management, employing uniform methods for metadata registration, enabling access to necessary data, maintaining privacy and data security, as well as ensuring data transparency. On the other hand, the research findings revealed that GILS, by increasing transparency and facilitating easier access to government information, can enhance the communication between the government and citizens and build public trust in smart systems. The GILS standard plays a significant role in improving access to government data. Furthermore, the findings of this study highlighted that privacy is a crucial aspect of GILS; one of the objectives of this standard is to protect individuals' privacy and safeguard personal information. Under this standard, governments are required to provide access to public and governmental information while paying special attention to individuals' privacy. Authentication is another vital factor in GILS. It involves verifying the identity and credentials of an individual or organization seeking access to government data or information. This is crucial because ensuring that the individual or organization in question is authorized to access government information holds high importance.

Conclusion

Overall, it can be stated that the structuring of government processes through the use of metadata standards can facilitate and expedite the development of smart government. The findings of this research indicated that providing efficient technological infrastructure and establishing appropriate information systems for government communications and service delivery to citizens, as well as developing security systems to protect sensitive governmental data and information, are among the essential requirements of a smart government. This is because a smart government needs a strong digital infrastructure to support online service delivery, data management, and communication with citizens. Another component of a smart government is transparency and access to information. To this end, creating systems to enhance transparency and ensure easy access to government information for citizens and the media, along with providing online services, plays a significant role in smart governance.

کلیدواژه‌ها [English]

  • Smart Government
  • Government Information Locator Service
  • GILS
  • Metadata Standard
تراب زاده، معصومه و پوراسماعیل، حسن. (1401). بررسی مدل ملی تبادل اطلاعات آمریکا جهت اتصال پایگاه داده‌های سازمان‌ها در دولت هوشمند. هشتمین کنفرانس بین‌المللی مهندسی برق، الکترونیک و شبکه‌های هوشمند، تفلیس گرجستان، 265-282.
کریمی اصفهانی، خدیجه و خانی، محسن. (1401). از دولت الکترونیک تا دولت هوشمند. هفتمین کنفرانس بین‌المللی و ملی مطالعات مدیریت، حسابداری و حقوق، تهران، 21-39.
کلانتری، نادیا و شاهپری، علیرضا. (1394). ارائه چارچوبی برای استقرار دولت هوشمند در ایران. پژوهش‌های مدیریت منابع سازمانی، ۵ (۴)، ۱۱۵-۱۵۶.
References
Andrews, J., & Duhon, L. (2021). GILS, Government Information Locator Service: Blending old and new to access US governmental information. In Pioneering New Serials Frontiers, Mexico City (pp. 327-333). Routledge.
Anthopoulos, L. G., & Reddick, C. G. (2016, April). Smart city and smart government: Synonymous or complementary?. In Proceedings of the 25th International Conference Companion on World Wide Web, Geneva, Switzerland (pp. 351-355).
Battista, A., Majewicz, K., Balogh, S., & Hardy, D. (2017). Consortial geospatial data collection: toward standards and processes for shared GeoBlacklight metadata. Journal of Library Metadata, 17(3-4), 183-200.
Caplan, P., & Guenther, R. (1996). Metadata for Internet Resources: The Dublin Core Metadata Elements Set and Its Mapping to USMARC. Cataloging & Classification Quarterly, 22(3–4), 43–58. https://doi.org/10.1300/J104v22n03_04
Guo, G., Chen, Z., Xie, D., & Li, M. (2017). Research on Information Organizations and Intelligent Retrievals for Digital Library Based on Ontology and Semantic Web. In Theoretical Computer Science: 35th National Conference, NCTCS 2017, Wuhan, China, October 14-15, 2017, Proceedings (pp. 144-154). Springer, Singapore.
Irhamni, A., Nurhadryani, Y., & Santoso, J. (2015). E-government Service on Law & Legal Libraries: Case Study In Indonesia Government Agencies. IFLA WLIC conference, Cape Town, 1-9.
Jiménez, C. E., Falcone, F., Solanas, A., Puyosa, H., Zoughbi, S., & González, F. (2016). Smart government: Opportunities and challenges in smart cities development. Civil and environmental engineering: concepts, methodologies, tools, and applications, 1454-1472.
Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for smart government: A research agenda. Government Information Quarterly, 36(2), 304-309.
Mellouli, S., Luna-Reyes, L. F., & Zhang, J. (2014). Smart government, citizen participation and open data. Inf. Polity, 19(1-2), 1-4.
Löfgren, K., & Webster, C. W. R. (2020). The value of Big Data in government: The case of ‘smart cities’. Big Data & Society, 7(1), 1-14
Neves, F. T., de Castro Neto, M., & Aparicio, M. (2020). The impacts of open data initiatives on smart cities: A framework for evaluation and monitoring. Cities, 106(1), 1-15.
Hujran, O., Al-Debei, M. M., Al-Adwan, A. S., Alarabiat, A., & Altarawneh, N. (2023). Examining the antecedents and outcomes of smart government usage: An integrated model. Government Information Quarterly, 40(1), 101783.
Ilhami, R., Endah Marlovia, E. M., & Achmad, W. (2022). Smart government policy implementation for smart city concept realization. International Journal of Health Sciences Scopus coverage years: from 2021 to Present, 8379-8389.
Ameen, A., Al-Ali, D., Isaac, O., & Mohammed, F. (2020). Examining relationship between service quality, user satisfaction, and performance impact in the context of smart government in UAE. International Journal of Electrical and Computer Engineering (IJECE), 10(6), 6026-6033.
Kummitha, R. K. R. (2020). Smart technologies for fighting pandemics: The techno-and human-driven approaches in controlling the virus transmission. Government Information Quarterly, 37(3), 101481.
Lai, C. S., Jia, Y., Dong, Z., Wang, D., Tao, Y., Lai, Q. H., & Lai, L. L. (2020). A review of technical standards for smart cities. Clean Technologies, 2(3), 290-310.
Bojović, Ž., Klipa, Đ., Bojović, P. D., Jovanović, I. M., Šuh, J., & Šenk, V. (2023). Interconnected Government Services: An Approach toward Smart Government. Applied Sciences, 13(2), 1062.
Melati, C., & Janissek-Muniz, R. (2020). Smart government: analysis of dimensions from the perspective of public managers. Revista de Administração Pública, 54(3), 400-415.
Guenduez, A. A., Mettler, T., & Schedler, K. (2020). Citizen participation in smart government: A conceptual model and two IoT case studies. Beyond smart and connected governments: Sensors and the internet of things in the public sector, 30(1), 189-209.
Pasek, J. E. (2017). Historical development and key issues of data management plan requirements for National Science Foundation grants: a review. Issues in Science and Technology Librarianship, 87, available online at: http://istl.org/17-summer/refereed4.html.
Schedler, K., Guenduez, A. A., & Frischknecht, R. (2019). How smart can government be? Exploring barriers to the adoption of smart government. Information Polity, 24(1), 3-20.
References [In Persian]
Torabzadeh, M., & Pourasmail, H. (2022). Examination of the National Information Exchange Model of the United States for Connecting Organizational Databases in Smart Government. The Eighth International Conference on Electrical Engineering, Electronics, and Smart Networks, Tbilisi, Georgia, 265-282. [In Persian]
Karimi Isfahani, Kh., & Khani, M. (2022). From E-Government to Smart Government. The Seventh International and National Conference on Management, Accounting, and Law Studies, Tehran, 21-39. [In Persian]
Kalantari, N., & Shahpari, A. (2015). Providing a Framework for Implementing Smart Government in Iran. Organizational Resource Management Research, 5 (4), 115-156. [In Persian]